Industrial Application of Chitosan as Promising Material for Wastewater Purification: A Review
Belgis BelgisThe rapid growth of the industry is giving positive effects for humans by providing daily needs and supporting economic development. However, the industrial process also releases pollution to the environment, which can cause water scarcity, biodiversity loss, and climate change. Removing these pollutants from various industrial wastes is a requirement for ensuring proper water quality for human consumption, agricultural use, and environmental safety. This work aims to explain the use of natural resources as a source of valuable compounds that can be used in wastewater treatment, particularly in Indonesia, by adopting a literature study method reviewing both national and international references. Chitosan is an effective bio-absorbent pollutant because of its high level of deacetylation and free amino groups, making it polycationic which is capable of being bound to metals, proteins, and dyes. Chitosan membranes can be applied only with chitosan material and composites: chitosan-Polyethylene Glycol (PEG), chitosan-Poly Vinyl Alcohol, chitosan-biosilica, chitosan-PVA-silica, chitosan-alginate, chitosan-cellulose, and chitosan-silica. Chitosan has the ability as a coagulant and reducing water turbidity. Chitosan can absorb metal ion (Cr (VI), Cs+, Pb(II), Fe, Cu(II)), dyes (anthraquinone dyes, brilliant blue, yellow dye, methylene blue, disperse orange, disperse blue, rhodamine B), drug residue, and hazardous materials, and can be used as raw material or in a film form. Since there is a high abundance of chitosan raw material in Indonesia, it is supposed to be able to support the application of chitosan as a natural purifying agent considering its high ability to absorb heavy metal and some dangerous materials.
Full PDF Download Citation Format
References
Al-Manhel, A. J., Al-Hilphy, A. R. S., & Niamah, A. K. (2018). Extraction of chitosan, characterisation and its use for water purification. Journal of the Saudi Society of Agricultural Sciences, 17(2), 186–190. https://doi.org/10.1016/j.jssas.2016.04.001
Arifin, A., Karlina, A., & Khair, A. (2017). The Effect of Chitosan Dosage Againts Liquid Waste Water Color on “Oriens Handicraft” Sasirangan Home Industry, Landasan Ulin. Journal of Health Science and Prevention, 1(2), 58–67. https://doi.org/10.29080/jhsp.v1i2.91
Aulia, Z., Sutrisno, E., & Hadiwidodo, M. (2016). Pemanfaatan Limbah Cangkang Kepiting Sebagai Biokoagulan Untuk Menurunkan Parameter Pencemar Cod Dan Tss Pada Limbah Industri Tahu. Jurnal Teknik Lingkungan, 5(2), 12.
Bratina, B., Šorgo, A., Kramberger, J., Ajdnik, U., Zemljič, L. F., Ekart, J., & Šafarič, R. (2016). From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. Journal of Environmental Management, 183, 1009–1025. https://doi.org/10.1016/j.jenvman.2016.09.063
Chodijah,Siti, H., & Liza,Novriani, F., Ida. (2018). Pengolahan Limbah Cair Kelapa Sawit Menggunakan Membran Berbasis Kitosan, PVA, dan Silika. Jurnal Penelitian Teknologi Industri, 9(2), 73. https://doi.org/10.33749/jpti.v9i2.3498
Dandil, S., Akin Sahbaz, D., & Acikgoz, C. (2019). Adsorption of Cu(II) ions onto crosslinked chitosan/Waste Active Sludge Char (WASC) beads: Kinetic, equilibrium, and thermodynamic study. International Journal of Biological Macromolecules, 136, 668–675. https://doi.org/10.1016/j.ijbiomac.2019.06.063
Dima, J. B., Sequeiros, C., & Zaritzky, N. E. (2015). Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere, 141, 100–111. https://doi.org/10.1016/j.chemosphere.2015.06.030
Evaani, D. Y., & Cahyaningrum, S. E. (2012). Sintesis dan Pemanfaatan Kitosan - Alginat Sebagai Membran Ultrafiltrasi Ion K+. UNESA Journal of Chemistry, 1(2), 7.
Fatombi, J. K., Lartiges, B., Aminou, T., Barres, O., & Caillet, C. (2013). A natural coagulant protein from copra (Cocos nucifera): Isolation, characterization, and potential for water purification. Separation and Purification Technology, 116, 35–40. https://doi.org/10.1016/j.seppur.2013.05.015
Feng, G., Ma, J., Zhang, X., Zhang, Q., Xiao, Y., Ma, Q., & Wang, S. (2019). Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage. Journal of Colloid and Interface Science, 538, 132–141. https://doi.org/10.1016/j.jcis.2018.11.087
Hameed, B. H., Mahmoud, D. K., & Ahmad, A. L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials, 158(1), 65–72. https://doi.org/10.1016/j.jhazmat.2008.01.034
Huang, Yimin, Lee, X., Macazo, F. C., Grattieri, M., Cai, R., & Minteer, S. D. (2018). Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite. Chemical Engineering Journal, 339, 259–267. https://doi.org/10.1016/j.cej.2018.01.133
Huang, Yong-hong. (2018). Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing. Journal of Integrative Agriculture, 17(2), 359–367. https://doi.org/10.1016/S2095-3119(17)61731-3
Hui, M., Shengyan, P., Yaqi, H., Rongxin, Z., Anatoly, Z., & Wei, C. (2018). A highly efficient magnetic chitosan “fluid” adsorbent with a high capacity and fast adsorption kinetics for dyeing wastewater purification. Chemical Engineering Journal, 345, 556–565. https://doi.org/10.1016/j.cej.2018.03.115
Iqbal, J., Wattoo, F. H., Wattoo, M. H. S., Malik, R., Tirmizi, S. A., Imran, M., & Ghangro, A. B. (2011). Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arabian Journal of Chemistry, 4(4), 389–395. https://doi.org/10.1016/j.arabjc.2010.07.007
Karimifard, S., & Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of The Total Environment, 640–641, 772–797. https://doi.org/10.1016/j.scitotenv.2018.05.355
Kim, M. K., Shanmuga Sundaram, K., Anantha Iyengar, G., & Lee, K.-P. (2015). A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chemical Engineering Journal, 267, 51–64. https://doi.org/10.1016/j.cej.2014.12.091
Kumari, S., & Rath, P. K. (2014). Extraction and Characterization of Chitin and Chitosan from (Labeo rohit) Fish Scales. Procedia Materials Science, 6, 482–489. https://doi.org/10.1016/j.mspro.2014.07.062
Kumari, S., Rath, P., Sri Hari Kumar, A., & Tiwari, T. N. (2015). Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environmental Technology & Innovation, 3, 77–85. https://doi.org/10.1016/j.eti.2015.01.002
Lasindrang, M., Suwarno, H., Tandjung, S. D., & Kamiso, H. N. (2015). Adsorption Pollution Leather Tanning Industry Wastewater by Chitosan Coated Coconut Shell Active Charcoal. Agriculture and Agricultural Science Procedia, 3, 241–247. https://doi.org/10.1016/j.aaspro.2015.01.047
Lessa, E. F., Nunes, M. L., & Fajardo, A. R. (2018). Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohydrate Polymers, 189, 257–266. https://doi.org/10.1016/j.carbpol.2018.02.018
Li, N., Xiong, X., Ha, X., & Wei, X. (2019). Comparative preservation effect of water-soluble and insoluble chitosan from Tenebrio molitor waste. International Journal of Biological Macromolecules, 133, 165–171. https://doi.org/10.1016/j.ijbiomac.2019.04.094
Liu, J., Liu, W., Wang, Y., Xu, M., & Wang, B. (2016). A novel reusable nanocomposite adsorbent, xanthated Fe 3 O 4 -chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions. Applied Surface Science, 367, 327–334. https://doi.org/10.1016/j.apsusc.2016.01.176
Lou, T., Cui, G., Xun, J., Wang, X., Feng, N., & Zhang, J. (2018). Synthesis of a terpolymer based on chitosan and lignin as an effective flocculant for dye removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 537, 149–154. https://doi.org/10.1016/j.colsurfa.2017.10.012
Ma, H., Pu, S., Ma, J., Yan, C., Zinchenko, A., Pei, X., & Chu, W. (2018). Formation of multi-layered chitosan honeycomb spheres via breath-figure-like approach in combination with co-precipitation processing. Materials Letters, 211, 91–95. https://doi.org/10.1016/j.matlet.2017.09.091
Markandeya, Dhiman, N., Shukla, S. P., & Kisku, G. C. (2017). Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology. Journal of Cleaner Production, 149, 597–606. https://doi.org/10.1016/j.jclepro.2017.02.078
Markandeya, Dhiman, N., Shukla, S. P., Mohan, D., Kisku, G. C., & Patnaik, S. (2018). Comprehensive remediation study of disperse dyes in wastewater using cenospheres nanosyntactic foam. Journal of Cleaner Production, 182, 206–216. https://doi.org/10.1016/j.jclepro.2018.01.244
Mohd Din, A. T., Hameed, B. H., & Ahmad, A. L. (2009). Batch adsorption of phenol onto physiochemical-activated coconut shell. Journal of Hazardous Materials, 161(2–3), 1522–1529. https://doi.org/10.1016/j.jhazmat.2008.05.009
Nair, V., Panigrahy, A., & Vinu, R. (2014). Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chemical Engineering Journal, 254, 491–502. https://doi.org/10.1016/j.cej.2014.05.045
Nitayaphat, W. (2017). Chitosan/coffee residue composite beads for removal of reactive dye. Materials Today: Proceedings, 4(5), 6274–6283. https://doi.org/10.1016/j.matpr.2017.06.127
Noralia, E., & Dina Kartika, M. (2013). Filtration Metal Ion Cr6+ with Composite Chitosan Silica Membrane. UNESA Journal of Chemistry, 2(1), 5.
Novi, Y., Zaharah, T. A., & Destiarti, L. (2016). Sintesis dan Karakterisasi Membran Komposit Kitosan-Kaolin. JKK, 5(4), 47–56.
Nuralam, Endoraza, P., & Arbi, B. P. (2012). Pemanfaatan Limbah Kulit Kepiting Menjadi Kitosan Sebagai Penjernih Air Pada Air Rawa dan Air Sungai. Jurnal Teknik Kimia, 18(4), 7.
Nurdin, F., Arifina, & Maulana, A. (2016). Uji Kemampuan Kitosan Dan Selulosa Pada Proses Penjerapan Logam Fe dan Zn yang Terkandung dalam Limbah Oli Bekas dengan Metode Kolom Filtrasi. Analit: Analytical and Environmental Chemsitry, 1(01), 7.
Nurdjannah, N. (2016). Penjernihan Sirup Pala dengan Chitosan dan Hemisellulase. J.Tek.Ind.Pert, 16(1), 1–8.
Phasuphan, W., Praphairaksit, N., & Imyim, A. (2019). Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. Journal of Molecular Liquids, 294, 111554. https://doi.org/10.1016/j.molliq.2019.111554
Ramadhanur, S., & Sari, A. M. (2015). Pengaruh Konsentrasi Khitosan dan Waktu Filtrasi Membran Khitosan Terhadap Penurunan Kadar Fosfat dalam Limbah Deterjen. Konversi, 4(1), 13.
Ruswahyuni Hartoko, Agus, R., Siti. (2010). Aplication of Chitosan for Water Quality and Macrobenthic Fauna Rehabilitation in Vannamei Shrimps (Litopenaeus Vannamei) Ponds, North Coast of Semarang, Central Java - Indonesia. Journal of Coastal Development, 14(1), 1–10.
Samuel, M. S., Bhattacharya, J., Raj, S., Santhanam, N., Singh, H., & Pradeep Singh, N. D. (2019). Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. International Journal of Biological Macromolecules, 121, 285–292. https://doi.org/10.1016/j.ijbiomac.2018.09.170
Shaida, Mohd. A., Dutta, R. K., & Sen, A. K. (2018). Removal of diethyl phthalate via adsorption on mineral rich waste coal modified with chitosan. Journal of Molecular Liquids, 261, 271–282. https://doi.org/10.1016/j.molliq.2018.04.031
Sohni, S., Hashim, R., Nidaullah, H., Lamaming, J., & Sulaiman, O. (2019). Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. International Journal of Biological Macromolecules, 132, 1304–1317. https://doi.org/10.1016/j.ijbiomac.2019.03.151
Susanto, Joko Prayitno, P., teguh. (2000). Chitosan Sebagai Bahan Koagulan Limbah Cair Industri Tekstil. Jurnal Teknologi Lingkungan, 1(2), 121–125.
Susilowati, Endang, H., Sri, & Mahatmanti, F. W. (2018). Sintesis Kitosan-Silika Bead sebagai Pengadsorpsi Ion Logam Pb(II) pada Limbah Cair Batik. Indonesian Journal of Chemical Science, 7(2), 9.
Utami, Umi Barorh Lili Irawati, Utami, M., Hanifa. (2011). Filtration of Sasirangan Wastewater Treatment Using Oil Palm Shell Active Charcoal Coated with Chitosan After Coagulation with FeSO4. Sains dan Terapan Kimia, 5(1), 34–44.
Wahyuni, S., Siswanto, S., & Putra, S. M. (2017). Formulasi Komposisi Membran Kitosan Dan Optimalisasi Pengadukan Dalam Penurunan Kandungan Padatan Limbah Cair Kelapa Sawit. Widyariset, 3(1), 35. https://doi.org/10.14203/widyariset.3.1.2017.35-46
Wang, K., Ma, H., Pu, S., Yan, C., Wang, M., Yu, J., Wang, X., Chu, W., & Zinchenko, A. (2019). Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water. Journal of Hazardous Materials, 362, 160–169. https://doi.org/10.1016/j.jhazmat.2018.08.067
Yan, Y., Yuvaraja, G., Liu, C., Kong, L., Guo, K., Reddy, G. M., & Zyryanov, G. V. (2018). Removal of Pb(II) ions from aqueous media using epichlorohydrin crosslinked chitosan Schiff’s base@Fe 3 O 4 (ECCSB@Fe 3 O 4 ). International Journal of Biological Macromolecules, 117, 1305–1313. https://doi.org/10.1016/j.ijbiomac.2018.05.204
Yang, S., Okada, N., & Nagatsu, M. (2016). The highly effective removal of Cs + by low turbidity chitosan-grafted magnetic bentonite. Journal of Hazardous Materials, 301, 8–16. https://doi.org/10.1016/j.jhazmat.2015.08.033
Yavuz, A. G., Uygun, A., & Bhethanabotla, V. R. (2009). Substituted polyaniline/chitosan composites: Synthesis and characterization. Carbohydrate Polymers, 75(3), 448–453. https://doi.org/10.1016/j.carbpol.2008.08.005
Zhang, W., Zhang, S., Wang, J., Wang, M., He, Q., Song, J., Wang, H., & Zhou, J. (2018). Hybrid functionalized chitosan-Al2O3@SiO2 composite for enhanced Cr(VI) adsorption. Chemosphere, 203, 188–198. https://doi.org/10.1016/j.chemosphere.2018.03.188
Zulfi, F., Dahlan, K., & Sugita, P. (2014). Karakteristik Fluks Membran Dalam Proses Filtrasi Limbah Cair Industri Pelapisan Logam. Jurnal Biofisika, 10(1), 11.
Copyright © 2019 Belgis Belgis

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.